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Abstract. Perfect icosahedral quasicrystals have a structural skeleton based on hierarchical
selfsimilar packing of atomic clusters. The related inflation rules constrain both composition
and atomic valences to have strictly defined values. Stability of the skeleton requires that bonding
electrons are recurrently localized at sites forming selfsimilar isomorphic subsets of the structure
and are distributed into ‘magic’ cluster states. The corresponding eigenstates show power law
dependences in space which generate a hopping mechanism for conductivity and unexpected
physical properties.

1. Introduction

Quasicrystals (QCs) are a new form of the solid state which differs from the other two known
forms, crystalline and amorphous, by possessing a new type of long-range translational
order, quasiperiodicity, and a noncrystallographic orientational order [1–3]. A central
problem in condensed-matter physics is to determine whether quasiperiodicity leads to
new physical properties which are significantly different from those of crystalline and
amorphous materials. Such unusual properties have been found in icosahedral (i) alloys
of high structural quality [4–7]. Some of their most striking features, which are not
expected for alloys consisting of normal metallic elements, are the very high value of
the electrical resistivity (up to∼10 � cm at low temperatures in the i-Al-Pd-Re system
[8–11]), a strong negative temperature coefficient of resistivity, an increase of resistivity
with increased structural perfection of the samples along with an extreme sensitivity to
sample composition, and a low, if any, electronic contribution to the specific heat and thus
a vanishing density of states (DOS) at the Fermi level.

Other peculiar properties of QCs include thermal insulator behaviour, difficult wetting
of the surface, low friction coefficient, high hardness, elevated corrosion resistance, and a
brittle–ductile transition with very soft plasticity above about 700◦C [7, 12, 13]. Most of
these properties combine effectively to give technologically interesting applications [14].

Differences between periodic crystals (PCs) and QCs show up in either real or reciprocal
space. Both viewpoints are useful for understanding some of the properties of QCs. The
starting ingredient to generate both PCs and QCs is a finite set of atomic units of finite
sizes which defines local symmetries (point group) and chemical order of the structure to be
grown. Then, PCs can be obtained via addition rules which define the Bravais lattice with
its translational invariance. To obtain QCs, substitution rules must be used instead, in such
a way that the result is a perfectly ordered, deterministic arrangement of atoms, without any
indication of periodicity. Substitution operations, although far less simple than translation
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algorithms, are the only way to grow an ordered structure with atomic units having both
high bonding energies and ‘forbidden’ symmetries (e.g. icosahedral morphology).

In a monatomic PC such as a metal crystal, all atomic sites are strictly equivalent.
If some electrons are loosely bonded to atoms, they have no reason to locate on a
particular site and can travel essentially freely through the bulk of the metal. The result is
high conductivity, isotropy of the properties, strain–stress characteristics, and well known
consequences for practical behaviours and applications. Conversely, strictly equivalent sites
cannot be found in QC structures. The ‘free’ valence electrons, if there are any, are actually
forced to ‘locate’ preferably at low-energy sites within the constraints of the Coulomb
interaction.

This statement must actually be somewhat smoothed out. QC structures are locally
isomorphic, which means that identical atomic clusters of any size can be found at distances
apart of about twice their size. These identical clusters form selfsimilar subsets of the
structure over which electronic and vibrational states are expected to extend, with hopping
or/and tunnelling communication between sites of a given subset.

The reciprocal space description of QCs adds to our understanding and supports similar
conclusions. Both PC and QC structures can be analysed in terms of their Fourier
components: the space dependence of their density is indeed easily expressed as a sum
of density waves. For PCs, the corresponding wave vectorsG define a discrete reciprocal
lattice and eachG vector is an integer linear combination of three basis vectors related to
the translation of the Bravais lattice. For QCs, the number of integer linearly independent
vectors required to span the reciprocal space exceeds the space dimension (e.g. six basis
vectors for icosahedral structures) and theG vectors fill the space densely. Inferred
differences between PCs and QCs include the analysis of wave propagation. Plane waves
with any wave vectork propagate easily through periodic structures except for those rare
k vectors which satisfy the Bragg law and, then, are diffracted. These exceptions generate
two-component standing waves; they remain extended but do not contribute to propagation
or to energy transport. In QCs, the exception becomes the rule since theG vectors form
a dense set. Thus, anyk vector can comply with diffraction conditions. Moreover, as it
can be easily inferred from a simple geometrical derivation based on the Ewald sphere,
multiple diffraction occurs generally and the number of individual plane waves contributing
to the resulting steady state increases with|k|. However, many contributionsF(G) of the
structure factor are very small in QCs, which damps down the diffraction effects for the
k states involving the correspondingG vectors and macroscopic mean free path cannot be
excluded completely. Another consequence of the set ofG vectors being dense in QCs is
that momentum of vibrational excitations can be transferred to the quasilattice in inelastic
scattering events by small quantities not limited from below in magnitude; this transfer
increases with|k| because of the possibility for thek state to couple with a larger subset
of G components of the structure if|k| is large. In other words an ‘umklapp’-like process
is rather the rule than the exception in QCs. Thus, everything seems to contribute to make
propagation phenomena difficult in QCs even though some sort of recurrent localized states
may allow transport effects.

Calculations of eigenstates for propagation of electrons or atomic vibration in QCs
have been extensively produced [15–20]. All these approaches are based on substitution
of periodic approximant structures to QCs, in order to be able to use calculation methods
currently applied to PCs. The results are useful and very often appear as consistent with
experimental data, within accuracy and resolution limits of course, but this may be as blind
an alley as the attempted analyses of the QC structure proposed by Pauling some ten years
ago, with the great risk of passing away from new concepts.
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A more interesting approach has been initiated recently, with the analysis of the influence
of an atomic cluster when embedded in a ‘free-electron’ metallic matrix [21, 22]. This has
led to the notion of ‘cluster virtual bound states’ corresponding to resonances of the free-
electron wave functions with cluster levels at different length scales.

In this paper, we are going to take advantage of a full analysis of QC structure in
terms of selfsimilar subsets of isomorphic domains to go a little further and to describe
eigenstates as recurrently localized, which is an attempt to combine multiple location in
space with relatively poor transport properties.

2. Why should quasicrystals form?

While there has been significant progress in the understanding of the growth of quasiperiodic
order [23], the basic issue of the energetics of growth has remained largely unexplained.
However, a consensus seems to emerge progressively that quasiperiodic long-range order
is somewhat forced by the trend of atoms to gather into very stable clusters having
noncrystallographic symmetries. The latter is obviously a requisite to prevent periodic
growth and the former is necessary if the clusters have to keep their morphological identity
when assembled to form bigger units. This idea that local rules may be responsible for
long-range order has been recently supported by numerical simulations [24]. A model which
presupposes the existence of two kinds of cluster and uses energetic considerations for the
growth of chemically long-range ordered compounds has been proposed by Quemerais [25].
The model shows that the electronic structure of the clusters can drive the system towards
quasiperiodic growth. One assumes that there are two kinds of cluster, A and B. LetvA
andvB be the valence andeA andeB the one-electron energy levels respectively. Different
growth patterns emerge depending on the values ofeA, vA, eB , andvB . In particular, for
specific nonintegral values ofvA and vB , a simple tight-binding calculation of the energy
shows that the quasiperiodic arrangement is preferred. Molecular dynamics calculations by
Dzugutov [26] have also demonstrated that a particle assembly, when allowed to relax into
a locally strong icosahedral potential, reaches long-distance quasiperiodic order.

Last but not least, such atomic clusters have been experimentally observed in the
structure of real QCs. Indeed, building units of about 50 atoms with geometry close to
that of a Mackay icosahedron have been identified in AlPdMn and AlFeCu QCs either
in their structures as deduced from diffraction data [2, 3, 27–29] or directly with imaging
techniques such as secondary-electron imaging [30], x-ray photoelectron diffraction [31], or
scanning tunnelling microscopy [32].

Conditions for stability of atomic clusters can be understood from the developing subject
of the physics of free atomic clusters. Free clusters are almost always generated and studied
in molecular beams. When assembled, most clusters coalesce to form bigger units and the
properties evolve to the bulk. This confirms that, if the clusters are to serve as building
blocks, they have to be such that they will not lose their identity when assembled. This can
be accomplished if the clusters are very stable and resist deformation. That this is possible is
already evident from the discovery of fullerides, which are crystals of C60 clusters. Another
cluster with the potential of forming cluster assemblies was discovered by Guoet al [33].
It is made up of eight transition metal and 12 carbon atoms and is referred to as a metallo-
carbohedrene. Both these are experimental discoveries. Is it possible to develop some
fundamental principles which could guide us to identify clusters with potential for forming
cluster materials?

To gain an insight into the above question, it is helpful to look at the factors controlling
the stability and reactivity of clusters. Let us start with the abundance spectra of Nan clusters
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generated in beams [34]. They show that the clusters containing two, eight, 18, 20, 40, 58,
92, . . . Na atoms are far more dominant than other sizes. These special clusters are said to
contain the magic numbers of atoms. Theoretical work shows that this can be understood
on the basis of a simple jellium model where one imagines that the positive charges of
the ions are distributed over the size of the cluster and the electrons move in this effective
potential. This is similar to the case of atoms except that in an atom the positive charge
is localized at the nucleus. The one-electron levels in the jellium picture can be labelled
using the same quantum numbers as in atoms because of the spherical symmetry of the
potential. This is shown in figure 1. In a cluster, the level order is 1s2 1p6 1d10 2s2 1f14

2p6 1g18 . . . . It is easy to see that the magic clusters two, eight, 20, 34, 40, 58, 92, . . .

correspond to clusters with filled shells, i.e. 1s2, 1s21p6, 1s21p61d102s2, . . . . The filled
electronic shells should also make these clusters behave like inert gas atoms. In fact they
do. For example, the ionization potential on Nan clusters shows peaks at clusters containing
two and eight electrons (atoms) as in the case of atoms where the maxima occur at inert
gases with two or eight electrons. The magic clusters are also chemically less reactive. For
example, experimental studies of the reactivity of Aln [35] with oxygen show that, whereas
Al 13 reacts strongly, (Al13)

− with 40 electrons and a filled electronic shell is relatively inert.
These results show that the electronic structures of clusters resemble those of atoms and
the most stable clusters correspond to filled electronic shells, which also render them less
reactive.

It was Khanna and Jena [36–38] who first argued that it should be possible to design
very stable clusters mimicking different elements in the periodic table. They considered an
Al 13 cluster. The ground state is an icosahedron having a central atom surrounded by a first
shell of 12 atoms. The cluster is geometrically close packed. Al is trivalent, so the cluster
has 39 bonding electrons, one shy of the magic number 40. The cluster could therefore
be made more stable by doping with a tetravalent impurity such as C. Usingab initio
calculations, they showed that an Al12C cluster is indeed more stable than Al13 by 4.4 eV.
The electronic shell filling also makes the cluster less reactive. A calculation of the binding
energy of a H atom brought towards Al13 and Al12C showed that the binding energy is
significantly reduced in the case of Al12C. The final test to the stability and inertness has
come from the recent computer simulations of a molecule composed of two Al12C units.
The studies based on Car–Parinello quantum molecular dynamics show that the structure of
the individual Al12C clusters remains intact. We would like to add that a similar study on
Al 12Si which also has 40 electrons showed that the energy gain is smaller. The energy gain
in Al 12C is due to the electronic shell filling as well as due to the fact that C is smaller than
Al and therefore allows the surface Al–Al bonds, which are 5% longer than radial bonds in
an ideal icosahedron, to relax.

In the above, we have discussed designing relatively inert clusters. One can also form
assemblies using molecular units composed of clusters interacting via ionic or covalent
bonds. Consider the Al13 cluster. In a jellium model, its electronic state corresponds to
1s21p61d102s21f142p5. It therefore requires one more electron to fill the p shell just as a
halogen atom. A theoretical calculation shows that it indeed has an electron affinity of 3.7
eV compared to 3.6 eV for the Cl atom. Note that an Al atom has an electron affinity
of only 0.6 eV. A theoretical calculation for the KAl13 cluster shows that the K loses its
electron to Al13 and the molecule has a binding energy of 3.04 eV due to the formation of
an ionic bond.

The above discussion shows that, by controlling the number of atoms and the chemical
composition, it is possible to have clusters which can mimic different atoms in the periodic
arrangement. These clusters can serve as building blocks in much the same way as atoms.
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Figure 1. Comparison of the one-electron energy levels in an atom and a cluster (superatom).
Examples of clusters simulating different atoms are also given.

Figure 2 shows the one-electron levels (only the valence portion) of an Al atom and an Al13

cluster. In an atom, the degeneracy of the one electron levels is governed by the angular
momentum quantum number. In a cluster, on the other hand, the degeneracy is governed by
the arrangement of atoms. Whereas an atom only undergoes a change in electronic orbital
upon chemical bonding, a cluster is a soft superatom where the atomic structure can also
change. The resistance to such a change depends on the binding energy of the cluster, the
energy cost for deformation and the binding energy between clusters.

In this context, growth of icosahedral QCs may result from a special situation regarding
the number of valence electrons available in the basic cluster as compared to a close magic
number [27–29]. Consider a cluster made ofN atoms, taken as all identical for simplicity,
with n valence (or bonding) electrons per atom such that the total number of electronsNn

differs from a magic numberM by n:

Nn = M + n
or

n = M/(N − 1). (1)

Since it misses the magic numberM, the cluster would be slightly reactive and it will
have a tendency to assemble withN − 1 identical clusters to grow into a supercluster (of
N clusters) containing againNn = M + n bonding electrons, missing again the ‘magic
stability’ to allow further growth into inflated selfsimilar supersuperclusters and so on and
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Figure 2. (a) Energy levels in an Al atom. (b) Energy levels of electrons in an Al13 cluster.

so forth. From a physical point of view, the picture assumes the cluster behaves as a
square well confining most of the electrons. Only electrons close to the Fermi energy
tunnel through the barrier but most of the new states are confined by the well created by the
succeeding supercluster and so on. The electron density of statesn(E) is thus composed
of the unlocalized states of one generation falling on to the localized states of the next
generation. It is schematically shown in figure 3. The width of the successive sub-bands
decreases rapidly, following the squared sizes of the successively inflated domains. The
density of states at low energy is mastered by the basic ‘small’ cluster and is terminated
toward the Fermi level by a succession of selfsimilar, more and more spiky features. The
overall envelope of the spikes follow a power law of energyE1/2 in good agreement
with experimental results [39]. Such a model has observable implications including poor
conductivity (increasing with temperature), low chemical reactivity, diamagnetism, and
mechanical brittleness.

To go beyond the model toward real QCs, there are two difficulties which are not easily
overcome: real QCs are never monatomic systems (they belong mostly to ternary systems),
it seems that their structures cannot be covered with a single type of cluster, and selfsimilar
packing does not necessarily have the expected density. These drawbacks of the model will
be illustrated and partially overcome in the next section with the example of the AlPdMn
QC.

Obviously, saying that the structure of QCs can be described by selfsimilar packing of
building blocks is not a discovery: everybody has realised that for a very long time. What
is somewhat new and may be useful in the above derivation includes:

(i) the idea that the structure is robustly quasiperiodic if the building blocks are ‘almost
magic’ clusters with noncrystallographic symmetries and

(ii) the consequence that most of valence electrons of the atoms are ‘virtually’ trapped in
cluster-like levels within a selfsimilar jellium following the constraints of the structure. The
result is a sort of multiple-site selfsimilar localization. This has not to be taken too strictly:
the atomic clusters are not isolated from each other; electrons may jump continuously from



Clusters and recurrent localization in QCs 1499

Figure 3. Schematic density of electronic states for AlPdMn QCs. The large feature on the
left-hand side is the contribution of the elementary PMI. The successive features arise from the
inflated PMIs.

Figure 4. A piece of a planar cut perpendicular to a fivefold axis of one possible configuration
of the structure of an AlPdMn quasicrystal. Hatched patches mark subsets of locally isomorphic
domains. (a) The state of the basic unit; (b) the state of the one time inflated domains.

site to site provided that the numbers of electrons in clusters of any scale remain magic
when averaged in time [21, 22]. This should also prevent any appearance of collective
modes such as plasmon oscillations; the point has indeed been confirmed experimentally
[40].
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3. Almost magic clusters and selfsimilarity constraints in AlPdMn quasicrystals

Details of preparation and characterization of AlPdMn QCs, including those in the form
of perfect large centimetre size single grains, have been published elsewhere [3, 4, 41–
44]. Techniques relevant to quasicrystallography have also been extensively and critically
presented on several occasions [1–3]. Though known at a rather low-level resolution only,
the observed structure reveals several building rules which appear astonishingly simple, with
both chemical and geometrical order.

First of all, the observed structure is essentially based on atomic units containing 51
atoms in total, named pseudo-Mackay icosahedra (PMIs) hereafter, and made of three
centrosymmetrical shells: an inner small centred core of nine atoms, an intermediate
icosahedron of 12 atoms and an external icosidodecahedron of 30 atoms. The last two
shells have practically equal radii and constitute altogether the ‘surface’ of the PMI, whose
diameter is very close to 9.6̊A. The small inner core is a piece of a pentagonal dodecahedron
whose 20 atomic sites are only partially occupied in a way which probably fluctuate from
PMI to PMI. Two families of chemically differing PMIs have been identified in the structure:
one family (PMI-A) has something close to six manganese and six palladium atoms on the
icosahedron sites of the external shell, the 39 remaining sites being occupied by aluminium
atoms; the second family (PMI-T) has about 20 palladium atoms among the 42 sites
of the external shell, the 31 or so remaining sites being occupied by aluminium atoms.
The calculated atomic density of an individual PMI is 0.064 atomsÅ−3, which is close
to the measured density of the bulk material, within experimental accuracy. Chemical
compositions of PMI-A and PMI-T as reported above cannot be strictly ascertained from
diffraction data. We have shown elsewhere [28, 29] however that these PMI compositions
are selfconsistently related to the combined constraints of the alloy composition and the
selfsimilarity rules of the structures. Treating the AlPdMn QC as a pseudo-binary system,
we have been also able to demonstrate that the pertinent magic number is here equal to
92 [28, 29, 45] and that the transition-metal atoms behave as if they had negative valences,
vPd being only slightly negative andvMn being close to−3. Such negative valences for
transition-metal atoms have been recently suggested in intermetallic compounds; they are
well consistent with the analysis of Mayouet al [21, 22] in terms of cluster virtual bound
states and they suggest the trend of the d elements in these alloys to saturate their electron
d levels by attracting electrons from Al atoms; the point has indeed received experimental
support [46, 47]. Even the valuesvPd ∼ −0 andvMn ∼ −3 can be qualitatively understood.
The electronic structures of Pd and Mn free atoms are 4d8 5s2 and 3d5 4s2 respectively;
nearest-neighbour distances in QCs have been found to be up to more than 5% shorter
than in the corresponding metals which generate large local pressure on electronic states;
this has been experimentally shown to force transfer of electrons from s to d states [48]
with the consequence that electride-like materials can be obtained where atoms become
ions with ‘interstitial’ electrons only. Then the electronic structure of Pd and Mn in
QCs should approach 4d10 and 3d7 respectively, with a trend for Mn atoms to attract
three more electrons so as to reach the 3d10 configuration, from a time averaging point of
view.

Finally, we have also previously explained that the selfsimilar growth of the structure,
or at least its skeleton, can proceed via successive substitutions of atoms by PMI with
proper rescaling [28, 29, 45]. However, it would be dangerous to think that the reality is
that simple. A minor remark regards density, which must be kept constant at any inflation
stage; as substitution of atoms by PMIs increases the number of atoms by a factor of 51,
the inflated volume must be also multiplied by 51 to avoid density losses; the scale factor
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(defining length expansion) must then be3
√

51= 3.7084. . . = (1.5478. . .)3, involving the
numberν ≈ 1.548, which is very close to the observed value and falls only 4% off the
golden meanτ used previously for simplicity [28, 29]. The detailed examination of the
growth scheme reveals [28, 29] that some clusters overlap at any inflation stage.

A more basic remark concerns what we may call a requirement for intrinsic disorder
even if the expression is not fully appropriate. The point is that the three-dimensional real
structure of QCs is not univocally defined from diffraction data. The best to be expected
is the six-dimensional periodic image of the three-dimensional quasiperiodic system which
then results from slicing by the physical space. Many configurations, equally probable,
are obtained when translating continuously this physical space in the hyperspace. The real
structure may be a patchwork of domains each taken in one of the possible configurations,
with interfaces or connecting regions in between implying phason defects. These defects
are frozen in at low temperature but may generate atom jumps when the thermal energy
is high enough, with softening of the material [49] and cleaning of weak diffuse scattering
contributions from diffraction patterns [50].

Even so, selfsimilarity remains the most robust ingredient of the overall structure and
this must be considered in its manifold aspects, i.e. not only via the already mentioned
geometrical implications. For instance, valences must be extended from atoms to clusters at
any inflation stage, with a one-to-one correspondence scheme. This means that, starting
with three atomic species, i.e. Al, Pd and Mn, we must continue with three building
units, i.e., PMI-Al, PMI-Pd and PMI-Mn. Two types of PMI only being deduced from
diffraction data must then be accepted as an experiment-limited result with the PMI-T
being the best observable compromise between PMI-Pd and PMI-Mn. Constraints from
selfsimilarity requirements may allow us to discriminate between the two.

Let us first consider that some of the PMI-T are the inflated partners of the Pd atoms.
The magic number invariance with inflation (M = 92 in the present case) imposes that the
number of valence electrons in a PMI-Pd is 92+vPd(vPd are the valences of the Pd atoms);
if xAl is the number of Al atoms over the 51 in the PMI, we have the trivial equation

3xAl + (51− xAl)vPd = 92+ vPd (2)

in which vPd must be slightly negative, very close to zero indeed, andxAl is an integer;
vPd fixed to zero givesxAl = 30.66, whose closest integers are 30 and 31. Using
now xAl = 31 (andxPd = 20 since PMI-T contains only Al and Pd atoms), one finds
vPd = −1/19 = −0.0526. . . . With the other possible valuexAl = 30 (xPd = 21) and
keepingvPd = −1/19, we have the second type of PMI-T, which happens to contain
88.8947. . . valence electrons, i.e. 92− 3.1053, whose ‘cluster valence’ is then−3.1053
(3+ 2/19 actually). This nicely sounds like PMI-Mn, the inflated partner of Mn atoms,
with common valences equal to−3.1053. . . . Both PMI-Pd (31 Al+ 20 Pd) and PMI-Mn
(30 Al + 21 Pd) are fascinatingly close to the experimentally built PMI-T, well within
practical resolution.

The other experimental family, PMI-A, can then be confidently assigned to Al atoms,
with a+3 valence value (92+3= 95 electrons in the PMI). Again the solution is very close
to the experimental insight; with 38 Al atoms, six Mn atoms (half of the large icosahedron)
and seven Pd atoms (the other half of the large icosahedron plus probably atoms at centres
of the PMIs) we obtain the expected+3 valence. Thus, refining the experimental results in
selfconsistency with inflation invariance of the structure and the magic cluster model allows
us to approach more closely the real atomic clusters. A very pleasant by-product conclusion
is that the three ingredients of the overall description (magic clusters, PMI units, and global
inflation) can be considered as very robust.
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To be completely conclusive on this point, we must also check selfconsistency of the
model with the alloy composition which may be written as AlxPdyMnz. After the first
inflation stage we have the following situation:

x PMI-Al which contain 38 Al+ 7 Pd+ 6 Mn

y PMI-Pd which contain 31 Al+ 20 Pd (3)

z PMI-Mn which contain 30 Al+ 21 Pd

with the resulting equations:

51x = 38x + 31y + 30z

51y = 7x + 20y + 21z (4)

51z = 6x

and the closing conditionx + y + z = 1.
This over determined system of equations has actually one and only one solution i.e.

x = 0.702 666. . . y = 0.214 666. . . z = 0.082 666. . . (5)

which is impressively close to the composition of the AlPdMn icosahedral phase as shown
in the experimentally built phase diagram [51]. It is noteworthy that the partial volume
occupied by all Al atoms in the structure is close to beingτ 2 times as large as the cumulated
partial volumes of all Pd and all Mn atoms.

We may consider the demonstration as convincing enough to use one of the model’s
major feature in the forthcoming section, i.e., the distribution of the valence electrons is
based on a hierarchy of what will be labelled recurrent localized states hereafter (HRLS).
In these HRLSs, each state is defined by the given size of an atomic domain (basic PMIs
or inflated PMIs at any inflation stage) and extends to all identical domains of the structure
within local isomorphism. In each of these domainsM/Nν3n electrons/atoms are confined
(time-averaged confinement) over distances scaling as3νn, in which M is the magic
number,N the number of atoms in the basic units (PMIs here) of diameter3, ν3 is the
inflation scale factor, andn, any integer, is the inflation order. Figure 4 shows two pieces
of isomorphic subsets cut into the structure of an AlPdMn QC, corresponding to space
extensions of two electronic eigenstates with, in each hatched area,M/N and M/Nν3

electrons/atom respectively. It is now time to see how all this is acting on eigenstates and
properties.

4. Eigenfunctions for HRLS and conductivity

In the introduction of the present paper, we explained that a plane wave with a wave vector
k couples with Fourier components of the structure whose Bragg vectorG is such that
|G|/22 6 |k|. This ‘window’ in reciprocal space defines the width of the ‘statek’ and the
direct space extension is a subset of atomic sites resulting from a convolution of the whole
structure by a repeated (recurrent) localization domain of size 2π/2|k|. Such a description
is fully consistent with the HRLS introduced in the previous section. Recurrently localized
states, or critical states, have eigenfunctionsψi over sitesi. To differentiate these particular
states from strictly localized or extended ones, one may ask the questions of on how many
sitesn(ε) is |ψi |2 larger than a small boundε and hown(ε) depends on the system size
D. For truly extended states,ψi keeps the same value on all sites andn(ε)ext ≈ D3; if a
state is fully localized, it is not affected by the system growing around andn(ε)loc ≈ D0

(constant value). Situations in between, withn(ε)rec ≈ D3β and 0< β < 1 may correspond
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to recurrent localization. One may say that then(ε)rec sites form a fractal subset of the
structure with dimensionality 3β < 3. It is reasonable to assume that this subset contains
all domains of sized made equivalent by local isomorphism and defined by the geometry
of the selfsimilar skeleton of the structure. Let us consider for instance a QC structure
whose skeleton is based on a Mackay icosahedron geometry, with sites at the centre and
on the 42 ‘surface’ positions being equivalent by local isomorphism; let us have also an
inflation ratioν3 for structure growth. Afterl inflation steps, the volume of each domain is
V ≈ (ν9)l = d3 and containsnrec atomic positions such asnrec ≈ d3β ≈ (43)l ; it is trivial
to calculate

β = ln nrec
lnV

− ln 43

9 lnν
= 0.956

with ν = 1.548 for AlPdMn QCs.
The eigenfunctionψ(d) is attached to the structure subset made up of isomorphic

areas of sized. Because of selfsimilarity of the structure, the eigenfuctionψ(χd) for
the structure subset made up of isomorphic areas of sizeχd is formally identical toψ(d)
within attenuation to account for repartition over a larger number of atoms. Thus

|ψ(χd)|2 = [1/n(χ)]|ψ(d)|2 (6)

with n(χ) the scale factor that gives the number of atomic positions in a structure piece of
sizeχd given that for sized. (6) is equivalent to

|ψ(d)| ≈ 1/dα α = 1
2 ln n(χ)/ lnχ. (7)

Using again the same example withχ = ν3 andn(χ) = 43 gives

α = 1
6 ln 43/ ln ν = 3β/2= 1.434. (8)

Thus conductance decreases asd−2.86 in this example, which precludes long-distance
conductivity at 0 K for a perfect QC. Defects or/and atomic displacements may erase the
potential barrier and restore transport occurrence. At this stage, it is important to realize
that the exponentsβ andα, defining the power law dependence of the eigenfunctions and
of their space extension, are in no way universal parameters. First of all they may vary
from system to system, depending on the inflation scale factor or/and on the geometry of
the cluster units. Moreover,α and β do not have single well defined values even for a
given quasiperiodic structure; in (8), indeed,ν does not suffer any ambiguity, butn(χ)
fluctuates in the structure since local isomorphism does not state that nearest neighbours
of given domains should be invariant. Then, theα andβ numerical values as calculated
above must be considered as no more than reasonable estimates in the remainder of the
paper. In condensed matter, electrons in localized states can participate in conductivity
via hopping between localization sites. For instance, the variable-range hopping model has
been designed by Mott to express conductivity in disordered systems, with the idea that the
hopping distance must increase as temperature is reduced to find localization sites with less
distant energy levels. This leads to the famousT −1/4 law:

σ = σ0 exp[−(T0/T )
1/4]. (9)

Such a variable-range hopping mechanism may apply to QC structures, with appropriate
alteration. Let us consider the contributionσ(d) to electron conductivity in a QC which
arises from hopping in the recurrently localized stateψ(d) that extends over the structure
subset made up of isomorphic areas of sized. The jump frequencys(d) from site to site
of this subset is given by

s(d) = |ψ(d)|2 exp(−1E/kBT ) (10)
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in which ψ(d) is given by (7) and1E is the possible fluctuation of energy levels in all
well-like potentials of sized, i.e.1E ≈ d−2. Accordingly, (10) transforms into

σ(d) ≈ s(d) ≈ (1/d2α) exp(−b/d2T ) (11)

in which b is a constant.
At high temperature the thermal activation term exp[−b/d2T ] is close to its upper

limit and the shortest hopping distance for the largest density of hopping electrons can be
activated. Thus

σht ≈ σ(d0) ≈ (1/d2α
0 ) exp

[ −b
d2

0T

]
(12)

with d0 of the order of 20Å and 2α = 2.9 in the example already quoted.
At lower temperatures the exponential factor in (11) may become negligibly small

unless larger hopping distancesd are activated. At a givenT value, the selected hopping
distanced corresponds to a maximum of the jump frequency. Setting∂s(d) to zero gives
d2(T ) = b/αT and

σ(T ) ≈ (α/β)α exp(−α)T α (13)

or σ(T ) ≈ T α (with α = 1.43 in the example of the AlPdMn QC).
Below a critical temperature (and beyond a critical distanced) the power lawT α may

be lost experimentally because of extrinsic effects due to structure defects, boundaries, and
the periodic approximant distortion which may restore theT −1/4 law of the Mott model [52]
or/and induce a

√
T contribution from Anderson weak localization. All in all, everything

said in this section is reasonably well consistent with experimental results of electrical
resistivity in QC systems such as AlPdRe, AlPdMn, or AlFeCu. By-products of the above
calculation of the electrical conductivity concern the optical conductivity, the diamagnetic
susceptibility, and the Hall coefficient. The optical conductivityσ(ω) does not follow at
all the Drude behaviour expected from metallic systems and is very weak at all energies
except around 1.12 eV, roughly where a broad resonance shows up. We have previously
demonstrated that this is consistent with local oscillation of electrons between neighbour
sites of a basic PMI recurrent state [28, 29]. The Hall coefficientRH is in principle equal
to the reciprocal number of the effective carriers; but this is strictly valid for free carriers
only. With other transport mechanismsRH remains roughly of the formRH ≈ −1/σ(T ),
which gives

RH ≈ −T −α
dRH
dT
≈ αT −(α+1)

for QCs, using the expression of (13) forσ(T ). Negative values ofRH and positive
temperature coefficient have indeed been observed experimentally [53] when the QC samples
are of high structural and stoichiometric perfection.

In the model presented in this paper, the electronic density of states at the Fermi level
is zero and valence electrons are distributed in saturated cluster levels (magic cluster at any
length scale). The net spin on transition-metal atoms is then zero and Pauli paramagnetism
does not show up, except at high temperature where the model may not apply any more.

Another transport phenomenon may also be described in a frame very similar to that
of the HRLS scheme; this is thermal conductivity, where, in principle, both electronic
and atomic vibrational states should participate. In the kinetic approximation thermal
conductivityκ(T ) can be expressed as

κ(T ) = 1
3C〈v〉3 (14)
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whereC is a specific heat,〈v〉 an average velocity for the thermal carriers, and3 their
mean free path. Heat can be transported by both electrons and phonons, if propagation
does take place. At low temperatureκ(T ), for both electric conductors and insulator
crystals, is dominated by the phonon contribution up to temperatures around 20 K. Then
this contribution vanishes drastically andκ(T ) becomes essentially zero at high temperature
for insulators while keeping an almost constant value for conductors due to the electronic
contribution (the Wiedman–Franz law).

In the description of QCs based on selfsimilar subsets of isomorphic domains,
phonons or propagation of atomic vibrations must obey the same rules as introduced
for electrons in the previous sections; vibrational states are attached to these subsets
and communication between domains occurs via hopping. However, when the hopping
distance exceeds some 100Å the situation becomes similar to that of scattered phonons
in crystal. This is actually the circumstances of the continuum approximation to which
a Debye model applies. Thus, it can be said that in the limit of large wavelengths
(λ > 100 Å) or small wave vectors (|k| 6 0.06 Å−1) or else low-energy vibrational
modes (h̄ω 6 1 meV or about 10 K), pseudo-phonons exist in QCs and contribute to
thermal conductivity. The density of states of these ‘propagating’ modes must be a
power law ωn of the energy, withn probably slightly larger than two because of the
general trend of the energies to be pushed down by the umklapp-like effect mentioned
previously. Thus, below about 10 K, one can calculateκ(T ) using (14) withC being
a power lawT n+1 at very low temperature and saturating in the Dulong–Petit regime
around 10 K and above,〈v〉 and3 being essentially constant in this temperature range.
This gives

κ(T )T BT ≈ T n+1 n > 2

at very low temperature and turning into a plateau above 10 K. As already said, the electronic
contribution toκ(T ) is negligibly small in this temperature range. To make an estimate, let
us assume that each electron is able to carry the thermal energykBT ; the number of carriers
being proportional to the electrical conductivityσ(T ), one may write

κ(T )elec ≈ LT σ(T )
or

κ(T )elec ≈ LT α+1. (15)

(15) is just an extension of the well known Wiedman–Franz law. The coefficientL

cannot exceed the Lorentz free electron valueπ2k2
B/3e

2, which maintains theκ(T )elec
contribution to thermal conductivity well below 1% up toT ≈ 100 K, for QCs of the
systems AlPdMn, AlPdRe and AlFeCu.

AboveT = 10 K and up to about 100 K the thermal conductivityκ(T ) indeed maintains
a constant value [54]. The further increase which is observed above 100 K [54] may
originate from the electronic contribution, following the law shown in (15), but we cannot
a priori eliminate possible contribution from phonon-assisted hopping of the recurrently
localized vibration modes corresponding to each class of isomorphic clusters. Let us call
these modes ‘clustrons’ for brevity. They are conceptually very similar to fractons [55].
For this purpose, (14) may be conveniently rewritten as

κ(T )clustron = 1
3C3

2τ−1
3 (16)

in which 3 is now the average distance between isomorphic sites and is also the average
jump length with the frequencyτ−1

3 . Mathematical derivations similar to those having
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produced (13) allow us to relate3 andτ−1
3 to temperature, so

3 = (β/αkBT )1/2 τ−1
3 ≈ (αkB/β)α exp(−α)T α. (17)

Assisted hopping of clustrons is a conduction mechanism that is very close to
tunnelling and the corresponding excitation should contribute to the specific heat with
linear temperature dependenceC = γ T at low temperature andC becoming constant
asT increases.

Substituting (17) into (16) thus gives

κ(T )clustron ≈ T α−1. (18)

Combining (15) and (18) gives the temperature behaviour of the thermal conductivity
of QCs above 100 K:

κ(T ) = AT α−1+ BT α+1.

At the highest temperature,κ(T ) is mainly influenced by theT α+1 electronic term (the
T 2.43 law for AlPdMn) which is again close to observations [54].

5. Discussion and conclusion

In the present paper we have tried to bring insight into the nature and the particular behaviour
of electronic (and also vibrational) eigenstates in QCs. The basic idea reported on here is that
eigenmodes follow the selfsimilar features of the structure and are assigned to extend over
site subsets gathering locally isomorphic domains. These isomorphic domains correspond,
for each eigenstate, to a given inflated version of basic atomic units. These basic atomic
units are very stable ‘magic’ clusters whose geometry and composition are strictly defined
within selfconsistency rules dominated by selfsimilarity. Most of the electromagnetic or
thermal properties of QCs can be reasonably understood within such a scheme.

Most of the bonding electrons being essentially trapped into cluster levels, with
exchanges limited to intraband-like mechanisms, also suggests that QCs must be poorly
reactive to any external action. They have actually a very low mechanical response, they
resist corrosion and their surfaces are weakly adhesive, refuse easy wetting, and exhibit
incredibly small friction coefficients. The effectiveness and impact of the rigid clusters
on mechanical properties is especially spectacular, with an extremely brittle behaviour up
to about 100 K prior melting. The rigid clusters prevent easy simple gliding and these
clusters cannot be cut or deformed without destabilization of the structure. Cracks have
been observed to propagate in between the clusters [56]. The surface morphology upon
fracture test shows the features typical of solids with strong anisotropic atomic bonds and
in which atomic transport, if any, is only very slow.

Finally the magic cluster scheme may also shed some doubts on a true quasiperiodic
structure of the QC surfaces. In any case, these surfaces when in their natural state will
be very rough due to emerging rigid clusters. This has been actually observed on cleaved
samples [32]. On the other hand, surface reconstruction, when allowed, can occur only if at
least a ‘layer’ of clusters is destroyed and rearranged; the corresponding abrupt cut of the
structure by a surface must also account for relaxation of the selfsimilarity rules dominating
the bulk. Chemical compositions as measured on reconstructed QC surfaces [57, 58] of
single grains of AlPdMn shows a net depletion in Mn, which suggests that a layer of the
ξ approximant [51] may form at surfaces, with perhaps some sort of a structural gradient
profile to reach the icosahedral geometry down in the bulk. Considering this point may be
an interesting challenge for further investigations.
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